µÈÀë×ÓÌåÎïÀíÖÐÆëȫŷÀ­-²´ËÉϵͳÇʵÄÈô¸ÉÁ˾Ö

2025.10.30

Ͷ¸å£ºÉÛ·Ü·Ò²¿ÃÅ£ºÀíѧԺä¯ÀÀ´ÎÊý£º

»î¶¯ÐÅÏ¢

»ã±¨±êÌâ (Title)£º Some results about sheaths to the full Euler-Poisson system in plasma physics

£¨µÈÀë×ÓÌåÎïÀíÖÐÆëȫŷÀ­-²´ËÉϵͳÇʵÄÈô¸ÉÁ˾֣©

»ã±¨ÈË (Speaker)£ºÒüº£Ñà ¸±½ÌÊÚ£¨»ªÇÈ´óѧ£©

»ã±¨¹¦·ò (Time)£º2025Äê10ÔÂ24ÈÕ 14:30

»ã±¨µØÖ· (Place)£ºÌÚѶ»áÒ飺260-470-516£¬ÃÜÂë123456

Ô¼ÇëÈË(Inviter)£ººñÏþ·ï

Ö÷°ì²¿ÃÅ£ºCA88Êýѧϵ

»ã±¨ÌáÒª£º

In this talk, we study asymptotic stability and convergence rate of sheath in 1 -3 dimensional cases on the full Euler-Poisson system for ions with Dirichlet boundary condition or fluid-boundary interaction. The proof is based on the energy method. A key point is to capture the positivity of the temporal energy dissipation functional and boundary terms with suitable space weight functions either algebraic or exponential depending on whether or not the incoming far-field velocity is critical.

¡¾ÍøÕ¾µØÍ¼¡¿